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Abstract 

Rationale: Cancer theranostics is an evolving field focused on reducing mortality and providing safer 
treatment options for complete remission. The rising incidence of cancer and increased mortality linked 
to frequent hospital visits highlight the need for nature-based remedies as promising alternatives. 
Nanotechnology has contributed to cancer treatment by offering effective anti-cancer and antimicrobial 
solutions, with a current emphasis on developing safe, easily synthesized nanomaterials using natural 
sources and green synthesis methods. 
Methods: This review explores the synergistic use of protein-based nanomaterials and 
green-synthesized nanoparticles in cancer theranostics. Sources of protein-based nanomaterials include 
human serum albumin, gliadin, DNA, peptides, collagen, bacteria, and soy protein. Green-synthesized 
nanoparticles discussed include gold, silver, copper, zinc, and magnesium. The approach involves 
evaluating the stability, biocompatibility, and therapeutic potential of these nanosystems based on existing 
experimental findings. 
Results: Protein-based nanomaterials and green-synthesized nanoparticles demonstrate synergistic 
effects that enhance their stability and efficacy in cancer theranostics. These nanosystems offer 
anti-cancer activity along with additional functional properties resulting from their synergistic 
composition. Furthermore, they are environmentally friendly and non-toxic. Despite their promise, the 
literature reveals a gap in studies investigating these hybrid nanosystems, particularly regarding in vivo 
evaluations. 
Conclusions: Synergistic protein–green synthesized nanoparticle nanosystems hold significant promise 
for cancer theranostics due to their enhanced therapeutic properties and environmental safety. 
However, additional in vivo studies are crucial to fully establish their efficacy. Future research should 
leverage emerging technologies to accelerate the development and testing of stable nanosystems for 
clinical application. 
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Introduction 
Cancer is an umbrella term that refers to the 

proliferation and unrestricted development of 
abnormal cells within various body parts and 
systems, including the blood, skin, digestive, urinary, 
respiratory, skeletal, reproductive, and neural 
systems [1,2]. Cancer remains one of the most lethal 

diseases in the world, with new cases increasing year 
after year [3]. International Agency for Research on 
Cancer reports estimates that one in every four deaths 
due to non-communicable diseases is caused due to 
cancer and an estimated of 20 million new cases were 
reported in 2022 alone [4,5]. The report also estimates 
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that approximately half of the diagnosed cases would 
die, making the mortality rate almost 50 percent [6]. 
The estimates are expected to be much higher as there 
are data insufficiencies due to lack of data from some 
countries, especially from low income and 
middle-income countries; data inconsistencies during 
data collection are another reason [6]. Research about 
tumor biology along with advancements in diagnostic 
techniques and anti-cancer therapies has contributed 
a significant 29% reduction in cancer-related mortality 
between 1991 and 2017 [3]. Current standard 
treatment plan for metastatic cancer includes usage of 
pharmaceutical chemotherapeutic agents, surgical 
resection, radiation and targeted therapy on growth 
factors [7]. The remedies, especially pharmaceutical 
chemotherapeutic drugs are often more expensive 
than natural alternatives, limiting their accessibility, 
especially in resource-constrained settings [2]. Cancer 
patients from low- and middle-income countries often 
resort to risky financial decisions due to the burden of 
high medication costs, repeated visits, and palliative 
care [8,9]. Despite advances in cancer treatment, 
current strategies frequently cause more harm than 
good, with high recurrence rates persisting even after 
surgery and medication [10]. A vital component of 
anti-cancer treatment is chemotherapy [11]. 
Nevertheless, a critical issue known as “drug 
resistance” has emerged in the realm of cancer 
chemotherapy [12]. Frequent exposure to 
chemotherapeutic agents can render cancer cells 
unresponsive to their inhibitory effects [12]. To 
counteract this challenge, high doses of these agents 
are administered to impede cancer progression. 
However, the use of elevated doses has a drawback - 
it leads to dose-dependent side effects, imposing 
limitations [12]. Most of the second- and third-stage 
cancer patients often fail to meet the inclusion criteria 
for clinical studies because they are heavily medicated 
and at risk for multi-drug resistance [13]. Multiple 
anti-cancer drug resistance accounts for 
approximately 9 in every 10 cancer-related deaths 
[13]. Also, there is higher clinical complexity for 
cancer patients compared to non-cancer patients as 
the patients often require frequent admissions to 
acute care hospitals [14]. The length of stay and 
readmission rates are higher for cancer patients 
compared to non-cancer patients, making them highly 
exposed to the pathogen infection, causing 
bloodstream infections, often ending with sepsis 
[14,15]. Infections are mostly caused by 
Gram-negative bacteria [15], thus generating more 
interest in developing cancer theranostics with dual 
properties that can work for both bacterial infections 
as well as for the cancer, as seen in case of lung cancer 
patients being administered boron and zinc derived 

nanomaterials for their anti-bacterial properties [16]. 
Nanotechnology has been increasingly viewed as a 
game-changer, with as many as around 75 anti-cancer 
formulations in clinical trials, with approximately 
more than 15 of them FDA approved [17]. However, 
there is still ongoing research as there are many 
nanoformulations that have not received approval for 
clinical application due to their toxicity in tissues and 
difficulties in obtaining the ideal nano-formulation 
size for optimum anti-cancer activity; with additional 
properties such as anti-bacterial activities also being 
needed in combinatorial therapies for different types 
of cancer [17].  

The war on cancer is far from being won, and the 
evolution of cancer theranostics depends on our 
ability to innovate, drawing inspiration from both 
modern science and nature [13]. Cancer theranostics 
combines diagnosis and therapy to enhance 
personalized cancer care by streamlining treatment, 
reducing durations, and improving outcomes through 
early intervention during diagnosis [18]. The purpose 
of this review is to bring together nanomaterials that 
can be used for sustainable cancer theranostics. 
Protein based nanomaterials are majorly known for 
their non-toxicity and green synthesized 
nanoparticles are known to be highly efficient in low 
dosages. Together they can be considered for safe and 
environmentally friendly cancer treatment that can 
potentially add more years to the cancer prognosis. 
The new age of cancer theranostics would benefit 
from harnessing the synergestic effect of the hybrid 
nanosystems comprising of proteins and green 
synthesized nanoparticles. The principles behind their 
synergy are chemical bonding, self-assembly, in-situ 
incorporation and adsorption [19-21]. Their 
synergestic effect offers better performance in 
properties [22] such as tumor imaging, diagnosis, 
drug delivery and controlled drug release; all of 
which is necessary for a biocompatible cancer 
theranostics [23]. Additionally, the side-effects due to 
microbial infection can be combated with the 
combinatorial approach of these nanomaterials. This 
review describes each nanomaterial’s potential and 
application, overall limitations and possible 
combinatorial approaches, that can bring together 
possible candidates to develop sustainable cancer 
theranostics as appropriate. 

Harnessing synergistic nanoparticles 
from nature 

Naturally derived remedies have stood the test 
of time, with approximately 85% of the global 
population relying on them [24]. Their affordability, 
minimal side effects, and ease of preparation make 
them highly valuable across diverse geographic and 
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socioeconomic communities [24]. Furthermore, these 
remedies pose no significant risks to human health or 
the environment [25]. 

In recent years, there has been a growing 
preference for naturally synthesized nanomaterials, 
primarily due to their cost-effectiveness, safety, and 
low systemic toxicity [17]. Nature offers a vast arsenal 
of proteins and extracts from plants and animals, 
which can be harnessed to create anti-cancer 
nanoscale molecules with high functional synergy. 
The scientific community has shown increasing 
interest in hybrid nanostructures combining proteins 
and nanoparticles [26]. Four key properties: shape, 
size, charge, and surface functionalization— 
collectively determine how a protein will 
“experience” or interact with a given nanoparticle, 
significantly influencing protein adsorption, 
conformational changes, and biological responses 
[26]. Preliminary studies suggest that when 
nanoparticles come into contact with proteins, a 
corona layer forms around them, enhancing their 
stability [26]. Strong interactions are observed in 
colloidally stable nanosystems, where proteins 
contribute to nanoparticle stabilization [26]. Recent 
research has highlighted the role of hydrophobic 
forces, hydrogen bonding, and van der Waals forces 
in facilitating these interactions [27]. Human serum 
albumin has demonstrated remarkable stability as a 
coating protein, with hybrid nanoparticles 
maintaining stability in water, Dulbecco’s phosphate- 
buffered saline, and Dulbecco’s modified Eagle 
medium [26]. Several studies have supported the 
viability of hybrid nanosystems involving human 
serum albumin and metals such as silver, copper, 
iron, zinc, and even rare metals like niobium [26-30]. 
The use of protein nanostructures as carriers for green 
nanoparticles presents promising opportunities for 
sustainable and safe cancer theranostics. Plant 
molecular farming enables plants to produce proteins, 
expanding the scope for combinatorial approaches 
[31]. Under optimal conditions, metal nanoparticles 
and protein nanostructures can self-assemble to form 
hybrid multimeric nanomaterials [32]. In these 
hybrids, proteins often serve as both linking and 
reducing agents for the metal nanoparticles [33]. This 
synthesis is achievable through protein-nanoparticle 
co-engineering, leveraging the self-assembly principle 
of biological systems [34,35]. Self-assembly involves 
intermolecular interactions such as van der waals 
forces [36], Hydrogen bonding [37], Ion-dipole 
interactions [38,39], Ion-Induced dipole interactions 
[40], and Dipole-induced dipole interactions [19]. 
Inorganic materials can be combined into organic 
materials while synthesizing, through in-situ 
incorporation [20]. The materials can also be 

adsorped, which makes the amalgamation of the 
nanomaterials easier [20].  

Although the available literature is still in its 
early stages, more in vitro and in vivo studies are 
needed to fully explore the biomedical applications of 
these hybrid nanosystems. Complementary research 
investigating their additional properties will serve as 
a foundation for developing novel hybrid nano-
structures. For instance, a study by Rezazadeh et al. 
(2020) demonstrated enhanced functional properties 
of silver nanoparticles when combined with chitosan- 
algae extract through biosynthesis. The synergy 
between the polysaccharide-based extract and 
nanoparticles not only controlled the size of the silver 
nanoparticles but also increased their bioavailability 
[41]. Furthermore, for effective antimicrobial activity, 
nanomaterials must either directly interact with 
microbes or facilitate the entry of antimicrobial agents 
[42]. Characterization studies of green-synthesized 
nanoparticles have shown promising antimicrobial 
properties, with high stability even without capping 
agents [43]. Notably, silver nanoparticles combined 
with bacteriophages (which consist of nucleic acid 
enclosed in a protein coat) have demonstrated efficacy 
in preventing secondary infections caused by 
Salmonella, a Gram-negative bacterium [44]. Gliadin 
based silver nanoparticles have been assessed for their 
anti-bacterial properties, which can be also extended 
to anti-cancer studies [45]. 

Studies have also shown that plant-derived 
silver nanoparticles exhibit superior antimicrobial 
activity compared to plant extracts alone [46]. 
Additionally, silver nanoparticles conjugated with 
albumin, collagen, zein, and lysozyme have 
demonstrated remarkable drug cargo uptake by 
osteosarcoma cell lines [47]. Small molecules, 
proteins, peptides, and nucleic acid sequences can be 
modified through mosaic, vertex, capsule, or 
cantilever approaches to function as effective carriers 
for diverse anti-cancer nanoparticles, including metals 
[48]. Furthermore, silver nanoparticles conjugated 
with Hepatitis B core antigen protein via an in vivo 
asymmetric self-assembly strategy could be used to 
develop immunoassays for diseases, including cancer 
[49]. Zinc-Chitosan nanoparticles exhibited stronger 
antibacterial effects, with minimal inhibitory 
concentrations of 9.25-13.5 µg/mL, completely 
inhibiting Staphylococcus aureus and Escherichia coli 
[50]. In anticancer activity, Zinc-Chitosan 
nanoparticles triggered apoptosis in human acute 
T-lymphocyte leukemia cells, leading to 65-70% 
cellular damage [50]. The results suggest that 
Zn-CSNPs hold promise as a therapeutic approach for 
treating zinc-deficiency-related diseases, particularly 
human acute leukemia [50]. 
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Early studies have also demonstrated the 
cytotoxic potential of gold nanoparticles stabilized by 
gelatin for delivering adriamycin to leukemia cells 
[51]. Drug internalization has been confirmed in 
gold-silica nanoparticles conjugated with human 
serum albumin, loaded with Doxorubicin, and sealed 
with Rose Bengal, creating a multifunctional 
nanosystem for diagnostics and therapeutics [52]. An 
in vivo study further validated the potential of 
gold-human serum albumin conjugates as a 
controlled drug delivery system for metastatic 
colorectal cancer [53]. 

These findings collectively highlight the 
immense potential of hybrid nanosystems in 
biomedical applications, particularly in cancer 
therapy. However, further research is essential to 
refine their design and ensure their safety and efficacy 
in clinical applications. 

Protein based nanostructures 
There are many ways we can describe the 

existence of living beings. In one such narrative, 
proteins are the building blocks of all living beings 
[54]. Protein structures can vary from simple 
monomeric proteins to more complex arrangements 
like oligomers, polymers, and networks formed 
through interactions between proteins [55,56] (Figure 
1). It is not a surprise that proteins can be used in a 
beneficial way, such as, a part of cancer treatment 

process, in form of protein nanostructures [57].  
 Proteins are abundant in nature, which makes it 

easier for procurement and synthesis [58,59]. A lot of 
these protein nanostructures are made using 
substances such as Albumin, Collagen, Gelatin, 
Legumin, Elastin, Ferritin, Soybean, Milk protein, 
Zein and Gliadin [60,61]. Although the raw materials 
involved are proteins, they are reinforced to be 
structurally stable and customized to function, giving 
the desirable effect [58,59]. The protein nanostructures 
are synthesized using techniques such as desolvation, 
emulsification, electrospray method and complex 
coacervation [62,61] (Figure 2). The choice of 
preparation methods, site-specific modifications, and 
recombinant engineering for these nanostructures is 
influenced by the physicochemical properties and 
composition of the therapeutic agents and proteins 
[61].  

Both naturally occurring and synthetic 
biomolecules, such as polysaccharides, nucleic acids, 
peptides, and proteins, have been investigated for the 
purpose of creating nanostructures in the field of 
cancer nanomedicine [63,64]. Tetrahedral DNA 
nanostructures (TDNs) have gained global attention 
for their stability, biocompatibility, and ease of 
modification, making them versatile carriers for 
various therapeutic agents and imaging probes in 
drug delivery, molecular diagnostics, and biological 
imaging [65].  

 

 
Figure 1. Nanostructures formed from simple to complex proteins. 
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Figure 2. Illustration depicting major types of protein nanostructure synthesis methods. 

 
Nature has evolved a diverse repertoire of 

protein nanostructures over millions of years, 
equipping them with a multitude of functions [55]. 
For example, viral capsids are a striking example of 
this phenomenon, as they are constructed from 
multiple copies of a monomeric protein unit, forming 
sturdy polyhedral structures crucial for safeguarding 
and transporting genetic material [66]. Similarly, 
bacterial exotoxins like botulinum toxins consist of 
distinct structural domains, each serving a specific 
function, collectively making them potent weapons in 
the natural world [67]. What adds to the intrigue is 
that post-translational modifications can further 
enhance the diversity of protein building blocks, 
expanding the array of functional nanostructures [57].  

The development of well-defined nanostructures 
with bioactivity and favorable material properties is 
particularly significant in biomedicine, where 
stability, biocompatibility, biodegradability, 
functionality and biosafety are of paramount 
importance [68-70]. 

Protein nanostructures in cancer therapeutics 
Protein nanostructures are catalysts for multiple 

complex cellular mechanisms, through their function, 
molecular recognition and stable structural 
frameworks [69]. Stability is very important, as they 
should never degrade in the host environment, which 

in this context would be the body of the cancer patient 
[71]. Whether it is to deliver drugs to the site of tumor 
or to induce a cellular process, structural stability is 
there in protein nanostructure [72,73].  

At lower doses, protein nanostructures perform 
well and there are usually lesser chemical reactions 
[62]. Protein nanostructures also provide a solution to 
alleviate the side effects associated with anti-cancer 
therapy such as chemotherapy [74]. They achieve this 
by selectively homing in on tumor cells, leaving 
healthy cells unharmed, thereby enhancing 
therapeutic effectiveness [75]. Human serum albumin, 
one of the most common protein nanostructures used 
to deliver nanoparticles, is reported to enhance the 
anti-cancer and anti-bacterial properties, with least 
toxicity [76]. 

Protein nanostructures offer significant 
advantages in biomedical applications due to their 
remarkable multifunctionality. Their adaptable 
design allows for the integration of various 
functionalities within a single platform, making them 
particularly valuable for addressing complex diseases 
like cancer [77]. These functionalities include targeted 
drug delivery, sequential targeting, responsiveness to 
stimuli, theranostics (combining therapy and 
diagnostics), combination treatments, and the 
incorporation of logic gates for precise therapeutic 
actions [61].  
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Human serum albumin 

Human Serum albumin, the most abundant 
protein in the blood, is a potential candidate for 
medication administration. It has a half-life of 19 days 
[78]. Through GP60-receptor-mediated transcytosis, it 
specifically binds to the secreted protein acidic and 
rich in cysteine, enabling it to efficiently enter 
vascular endothelial cells and selectively accumulate 
inside cancer tissues [79]. According to Wang et al. 
(2021), via in vivo investigations, it has been shown 
that a nanovaccine composed of endogenous human 
serum albumin and specific constituents enhances 
both innate and adaptive immunity against several 
types of cancer. Albumin nanocarriers offer numerous 
advantages, including non-toxicity, biodegradability, 
ease of preparation, non-immunogenicity, precise 
sizing, and the presence of reactive groups like thiols, 
amines, and carboxyl groups [80]. Various 
albumin-based cancer nanomedicines derived from 
anticancer formulations have been implemented in 
clinical trials, demonstrating the promise of albumin 
in treating cancer. The FDA has approved Abraxane, a 
nanomedicine that uses albumin as its basis, for the 
treatment of advanced breast, lung, and pancreatic 
cancer [61]. 

Saleh et al. utilized the desolvation method to 
craft human serum albumin (HSA) nanoparticles 
containing curcumin, which were then delivered to 
HER-2 positive breast cancer cells [80]. The 
drug-loading efficiency was 3.4%, with an 
encapsulation efficiency of 71.3%, leading to 
enhanced stability and solubility of curcumin. Surface 
modification enabled targeted delivery by 
conjugating HER2 Apt to the nanoparticle surface 
[80]. Ex vivo experiments confirmed that these 
albumin-loaded nanocarriers improve drug release, 
increased bioavailability, enhanced pharmacokinetic 
properties, and improved drug targeting to tissues 
[80]. The use of HSA nanoparticles as vectors to 
transfer genes or antibodies has also been 
investigated. In a study, Mesken et al. used HSA 
nanoparticles coupled with a cell-penetrating peptide 
(CPP) to transfect HEK 293T cells. These nanoparticles 
were also generated using the desolvation process, 
with particle sizes ranging from 207.8 ± 21.3 to 222.8 ± 
42.4 nm [81]. Plasmid loading efficiency was 
confirmed in vitro to be unaffected by CPP surface 
alteration, with a value of 78.3 ± 13.0% [81]. At high 
plasmid concentrations, transfection efficiency rose by 
up to 50% [81]. Furthermore, HSA nanoparticles can 
be used as carriers of non-DNA payloads due to their 
low cytotoxicity. For instance, Redín et al. created 
HSA nanoparticles that were loaded with the 
chemical medication bevacizumab, which is used to 
treat certain eye illnesses and tumours [82]. The 

resultant bevacizumab showed high stability and a 
two-phase release pattern, with a slower, continuous 
release occurring for more than 24 hours after an 
initial release of roughly 400 μg/mL during the first 5 
minutes. Crucially, in vivo investigations verified the 
albumin nanoparticle’s non-toxicity and showed 
mucosal adherence [62]. It is important to note that 
albumin nanoparticles and other nanostructures 
produced from natural proteins have been used in 
medicinal applications in the past due to their 
inherent properties such as drug encapsulation, 
targeted delivery, stimulus-responsive 
conformational changes, synergistic theranostics, and 
enzymatic performances [83].  

Gliadin 

Gliadin is a gluten protein produced from wheat, 
showing promise as a polymer for oral and topical 
drug delivery systems [84]. It is often used in 
mucoadhesive formulations because of its ability to 
adhere to mucous membranes. Gliadin offers several 
appealing attributes, including biocompatibility, 
biodegradability, natural origin, non-toxicity, and 
stability, making it an excellent candidate for drug 
delivery systems [84].  

There have been few studies that conducted 
studies involving gliadin nanostructures loaded with 
anticancer drugs, performing in vivo experiments that 
induced apoptosis in breast cells [85], with 
combination of gelatin [86]. Using an electrospray 
deposition method, their study was centred on 
creating gliadin and gliadin-gelatin composite 
nanostructures for the regulated release of the 
anticancer medication cyclophosphamide. Gliadin 
nanostructures containing cyclo-phosphamide 
exhibited a 48-hours release pattern, while 
gliadin-gelatin nanostructures exhibited faster release 
kinetics [85]. Breast cancer cell cultures treated with 
cyclo-phosphamide-loaded gliadin nanostructures 
were maintained for 24 hours, resulting in cell 
apoptosis [85].  

DNA 

Because of its unique benefits and remarkable 
biocompatibility, co assembling proteins and DNA to 
form hybrid nanostructures is a rapidly expanding 
topic of study. When it comes to creating a variety of 
nanostructures, DNA is more precise than other 
nanomaterials. Conversely, proteins offer a multitude 
of well-established specific biological functions [87]. 
Consequently, DNA-protein nanostructures enjoy the 
unique advantage of utilizing DNA as a structural 
scaffold for the precise generation of predicted 
nanostructures, while accurately labeling proteins to 
perform various functions [87]. This synergy results in 
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the development of novel hybrid nanomaterials with 
functionalities that cannot be achieved by individual 
biomolecules [87]. 

One noteworthy instance is the self-assembly of 
hybrid nanospheres made of DNA and streptavidin, 
which are highly versatile and can easily load 
chemotherapeutic drugs and functionalize with 
targeting molecules. In a one-pot self-assembly 
system, the nano-spheres go through three reaction 
phases [88]. Doxorubicin (Dox), a popular cytotoxic 
chemotherapy drug, may be loaded into these 
nanospheres with ease [88]. The loaded nanospheres, 
also called Dox-nanospheres, show traits of 
continuous drug release [88]. Because of their exact 
modularity for in vivo imaging and cancer targeting, 
their biocompatibility, and their easy one-pot 
synthesis, self-assembled DNA-streptavidin hybrid 
nanospheres offer tremendous potential as a 
cancer-targeted nanoplatform [89].  

Peptide based hydrogels 

Peptide hydrogels have emerged as frontrunners 
in the realm of medical applications, owing to their 
remarkable structural and functional attributes. 
Numerous self-assembling peptides have been 
developed, holding promise as carriers for delivering 
anticancer drugs [90]. These self-assembled peptides 
form hydrogels with nanotube-like structures. 
Extensive examinations have confirmed their 
mechanical robustness, stability, biocompatibility, 
and precise microscale dimensions. Additionally, 
these nanotubes exhibit thermal and chemical 
properties well-suited for their intended purpose [90]. 

An important milestone was reached by Mao et 
al., who pioneered a drug delivery system centered on 
a self-assembled peptide hydrogel. Their research 
successfully integrated two chemotherapeutic drugs, 
resulting in a notable enhancement of drug safety [91]. 
This innovative device achieved controlled drug 
release through ester bond hydrolysis, showcasing its 
potential for precise and targeted anticancer drug 
delivery. Small peptide hydrogels are regarded as 
more advantageous for drug delivery due to their 
cost-effectiveness and customizable properties [92].  

Collagen and gelatin 

Collagen nanoparticles (collagen-NPs) are 
gaining recognition as promising biopolymeric 
nanoparticles due to their biodegradability and 
biocompatibility, characterized by low 
immunogenicity and non-toxicity. In a study, 
researchers isolated eight dis-tinct actinomycete 
strains from soil samples in Egypt, five of which 
demonstrated the ability to synthesize collagen-NPs 
[93]. Among these, one strain, identified as 

Streptomyces xinghaiensis NEAA-1, exhibited the 
greatest biosynthetic potential, displaying 
anti-hemolytic, antioxidant, and cytotoxic properties 
for HCT116 cell lines. In vivo experiments indicated 
that collagen-NPs could suppress the growth of 
Ehrlich ascites carcinoma in mice, and when 
combined with doxorubicin (Dox), they achieved 
substantial tumor suppression [93].  

Moving to another aspect, gelatin (degrade form 
of collagen) nanostructures loaded with paclitaxel 
offer controlled drug solubility both in vitro and in 
vivo settings, especially in aqueous environments, 
with a sustained release pattern [94]. When 
administered intravesically, these paclitaxel-loaded 
nanostructures efficiently target bladder tumors while 
minimizing systemic absorption [94]. Furthermore, 
these nanostructures maintain a consistent release of 
paclitaxel, addressing concerns related to drug 
dilution. This sustained release has the potential to 
reduce treatment frequency due to the prolonged 
maintenance of therapeutic drug levels [94].  

Bacteria 

Acoustic protein nanostructures, or gas vesicles 
(GVs), are aerated protein shells found in aquatic 
bacteria [95]. These nanoscale structures enable strong 
ultrasound contrast, deep tissue penetration, and 
multimodal imaging. Genetically encoded GVs offer 
high-resolution, background-free imaging and can be 
customized for targeted applications [95]. A group of 
researchers modified E. coli to gas vesicles (GVs) that 
target the tumor’s hypoxic environment, enhancing 
ultrasound imaging and enabling focused ultra-sound 
ablation. Nanoparticles with IR780, perfluorohexane, 
and AQ4N exploited the hypoxic environment to 
boost therapeutic effects [96-98]. GVs-E. coli 
accumulates in tumor regions, improving treatment 
precision while reducing side effects. The approach 
was validated through fluorescence, photoacoustic, 
and ultrasound imaging, demonstrating its diagnostic 
and therapeutic potential [99]. Similarly, gas vesicles 
and functionalized GVs produced by cyanobacteria 
are used in sonodynamic therapy for cancer, 
enhancing ROS production and tumor growth 
inhibition [100]. GVs’ hollow structure improves 
ultra-sound contrast, functionalizes with dyes, and 
assists in imaging and therapy. In vitro and in vivo 
studies show that GVs effectively induce apoptosis 
and inhibit tumor growth while maintaining 
biocompatibility [100]. 

Soy protein 

A study on soy protein isolate (SPI)-based 
nanoparticles used a pH-driven method to enhance 
curcumin’s stability and bioavailability [101]. SPI-Cur 
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nanoparticles exhibited strong anticancer activity 
against HepG2 cells by triggering ROS-induced, 
mitochondria-mediated caspase apoptosis [101]. 
biocompatibility [100]. 

Other protein nanostructures 

Researchers explored stability, circulation, and 
tissue distribution of chemically self-assembled 
nanorings (CSAN) made from dihydrofolate 
reductase fusion proteins for potential in vivo 
applications [102]. In vivo microPET/CT imaging 
revealed significant tumor accumulation and 
high-contrast imaging, demonstrating CSANs’ 
potential for drug delivery and imaging [102]. Protein 
based nanostructures enhance immune responses by 
targeting antigen-presenting cells and delivering 
therapeutic agents [57]. Dual-targeting nanoparticles 
with monoclonal antibodies offer a stable, 
cost-effective alternative to bispecific antibodies, 
enabling more precise cancer treatment [103]. 
Virus-like nanoparticles also show promise for 
antigen delivery in cancer immunotherapy [104]. One 
study examined bacteriophage protein-based 
nanotubes as therapeutic nanocarriers [105]. While 
colorectal cancer cells internalized them, primary 
macrophages cleared them, posing a challenge for 
therapy. Reduced macrophage clearance with age 
suggests potential for elderly cancer patients [105]. 
Ferritin, a well-studied protein with an octahedral 
structure, can encapsulate drugs and target tumor 
cells via transferrin receptors [106]. 

Limitations of protein nanostructures 
However, using nanostructures in cancer 

therapy comes with challenges. Biological barriers can 
impede their efficient transport to target tissues, 
reducing delivery efficiency. Nanoformulations are 
also vulnerable to clearance by the reticuloendothelial 
system and often struggle with limited penetration 
into tumors compared to free drugs [107]. Researchers 
have focused on developing functionalities to 
overcome these barriers and enhance tissue 
penetration [107]. A multitude of factors may increase 
the risk of an unexpected loss of function or adverse 
effects, and the diverse range of nanomaterials may 
lead to intricate in vivo behaviours; therefore, careful 
consideration is necessary when developing 
multifunctional nanomaterials, considering the 
specific medical requirements as well as the unique 
properties of the materials [107]. Another major 
limitation while using protein nanostructures is the 
difficulty adjusting its size and the high energies that 
it has due to its size [62]. Drug delivery vehicles based 
on natural proteins have several benefits for treating 
cancer, but clinical translation is still a difficult task. 

Critical to therapeutic applications include concerns 
of large-scale synthesis, stability of formulations, in 
vivo distribution, metabolism, and excretion, as well 
as structural heterogeneity. To further understand 
nanostructure absorption and dispersion, sensitive in 
vivo detection methods are needed [61]. In protein 
complexes, maintaining activity under mild 
conditions is crucial [108]. Non-covalent or dynamic 
covalent strategies preserve structure and function 
[109,69] enabling reversible assembly to be like in 
nature [110]. Chemical cross-linking, however, can 
limit protein dynamics due to stability constraints 
[111]. 

According to one study, (Wang et al., 2021) 
protein engineering suited to particular therapeutic 
applications and de novo design can overcome 
constraints associated with the functionalization of 
nanostructures based on the structures and properties 
of original proteins [61]. Biotechnology enables 
tailored protein nanostructures, using genetic 
engineering and de novo design [112]. Challenges 
remain in predictability, function integration, and 
avoiding aggregation [112]. 

Green nanoparticles 
For applications in biology and medicine where 

nanoparticle purity is paramount, the utilisation of 
natural resources to produce nanoparticles offers a 
sustainable, environmentally friendly, cost-effective, 
and chemical contaminant-free option [113]. It is easy 
to mass-produce common and useful nanomaterials 
[113]. There is no need for harmful chemicals in 
biological procedures. Plant extracts have less 
harmful byproducts that are easier to get rid of [113]. 
Moreover, the green synthesis aims for better yields 
compared to the traditional chemical methods [114]. 
The yields are mostly metal nanoparticles, and they 
are preferred for their unique optical, electronic, and 
catalytic properties [115]. Green synthesis comes 
under the bottom-to-top approach synthesis process 
that uses chemical or biological methods, as compared 
to the top-to-bottom approach that uses physical 
methods [114]. Nanoparticles can be fabricated 
biologically using plant extracts, which act as natural 
reducing agents [116]. The process involves mixing 
dried, crushed plants with a solvent to obtain the 
extract, which is then combined with a metal ion 
solution [114]. This green synthesis method eliminates 
the need for additional reducing agents as the plant 
extract facilitates the reduction of metal ions to 
nanoparticles [116,117] (Figure 3).  

Favourable high yield requires the optimal 
temperature and pH, as temperature controls 
nucleation while pH controls the growth kinetics and 
stability [118,114]. Nucleation is the first stage of 
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nanoparticle formation, which determines the size 
and morphology of the product [114]. Other 
conditions that also determine high yield are 
concentration of the reaction, reaction time and the 
plant extract components [114]. 

The advantages of using plant extracts are high 
as they contain natural polyphenols [119], 
carbohydrates, amino acids and proteins [120], which 
help in making stable nanoparticles with faster 
synthesis rate than nanoparticles not using plant 
extracts [121]. Moreover, plant extracts serve as both 
reducing and stabilizing and capping agents, 
reducing aqueous solutions of metal salts into 
nanoparticles while preventing their aggregation over 
time [122,123]. Green synthesized nanoparticles, such 
as those derived from curcumin, are also known to 
show dual properties of anti-cancer and anti-bacterial 
activity, in conjuction with silica-coated Fe3O4 
magnetic nanoparticles [124].  

Green nanoparticles in cancer therapeutics 
There is a growing trend of green synthesis that 

focuses on creating nanoparticles with more stability 
[69]. Comparing Nanoparticles made using green 
route synthesis to those made using physico-chemical 
techniques reveals that the former are more stable and 
effective [113]. In the spirit of going green, be it with 
energy, or even with nanotechnology, researchers 
have found newer methods to design sustainable 
nanoparticles from renewable sources. There are 
different categories of nanoparticles that are green in 
synthesis, with metals from gold, silver, copper and 
so on (Figure 4).  

Gold nanoparticles 

Gold nanoparticles (AuNPs) have garnered 
increasing interest for their potential in bio-medical 
applications and the focus on green synthesis 
methods has intensified due to their associated 
biocompatibility and scalability. Previous studies 
have proved the anti-microbial activity of gold 
nanoparticles to increase with higher volume [125]. A 
study by Ashikbayeva, et.al, describes the synthesis of 
AuNPs derived from green tea leaves and their 
subsequent application in the detection of the CD44 
cancer biomarker via a biosensor constructed with 
ball resonator optical fibers [126]. Characterized by its 
rapid and label-free operation, the biosensor can be 
fabricated in just 20 seconds and features a compact 
de-sign that holds promise for in vivo applications 
[126]. In a study where gold nanoparticles (AuNPs) 
derived from the leaf extract of Coleus scutellarioides 
(L.) Benth was considered for breast cancer; the 
nanoparticles demonstrate effective free radical 
scavenging capabilities, particularly at higher 

concentrations compared to the plant extract alone 
[127]. Furthermore, the cytotoxic effects of the AuNPs 
were evaluated against the MDA-MB-231 breast 
cancer cell line, revealing a dose-dependent reduction 
in cell viability for the cancer cells, while showing no 
significant cytotoxicity towards normal cells [127]. 
Morphological changes in cancer cells, such as 
shrinkage and detachment, were observed after 
treatment, suggesting selective toxicity [127]. In a 
study where gold nanoparticles (AuNPs) were 
synthesized using methanol extracts from Moringa 
oleifera seeds, there was an emphasis on an 
eco-friendly one-pot process [128]. The antioxidant 
activity of the AuNPs was assessed using the DPPH 
radical stabilization method, and the nanoparticles 
exhibited a dose-dependent effect on A549 lung 
cancer cell proliferation showing anticancer property 
[128].  

Silver nanoparticles 

One such innovation is the green-synthesized 
silver nanoparticles (AgNPs) from Cucurbita spp. fruit 
peels [129], providing an environmentally friendly 
and cost-effective method. An experimentally 
synthesized Ag-NPs demonstrated a spherical 
morphology and stability, confirming their 
biocompatibility to be used as radiosensitizer for 
triple negative breast cancer [129]. These 
nanoparticles led to increased expression of 
apoptotic-related genes in MDA-MB-231 cells and 
activated the apoptosis pathway and induced 
endoplasmic reticulum stress, which contributed to 
enhanced radiosensitization [129]. Another study 
focused on the anticancer effects of silver 
nanoparticles synthesized from Andrographis 
macrobotrys, specifically targeting A549 lung cancer 
cells [130]. The results demonstrated a pronounced 
dose-dependent increase in cytotoxic effects, with 
morphological changes induced in the treated cancer 
cells, revealing signs of cell shrinkage, membrane 
blebbing, and apoptotic surface formation [130]. 
Another study evaluated the anticancer effects of 
silver nanoparticles derived from lemon balm leaves, 
graphene, and silver-graphene nanocomposites on 
MCF-7 breast cancer cells using the MTT assay to 
measure cell survival [131]. Silver nanoparticles 
demonstrated significant cytotoxicity, notably 
increasing cancer cell death correlating with elevated 
reactive oxygen species and malondialdehyde levels, 
alongside decreased glutathione [131]. These 
mechanisms promoted apoptosis in breast cancer cells 
[131]. In another landmark study, the antioxidant 
potential of AgNPs synthesized from Moringa 
peregrina leaf extract, showed strong cytotoxicity 
activity against MCF-7 breast cancer cells [132]. The 
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AgNPs induced cell death primarily through 
apoptosis rather than necrosis, influenced by 
oxidative stress from reactive oxygen species and 
modulation of key signaling pathways like the p53 
gene [132]. Additionally, AgNPs was found to impede 
tumor migration and angiogenesis, potentially 
reducing the risk of metastasis in cancer treatments 
[132]. A group of researchers synthesized silver 
nanoparticles from red seaweed Champia parvula 
extract, leveraging its antioxidant-rich 
phytochemicals like phenols, flavonoids, and tannins 
[133]. These Champia parvula-mediated AgNPs 
(Cp-AgNPs) showed stability and antimicrobial 
activity against Streptococcus mutans, Staphylococcus 
aureus, and Candida albicans, and anticancer effects, 
especially against lung cancer cells indicating 
potential as multifunctional cargo [133].  

Copper nanoparticles 

Synthesis of copper oxide nanoparticles for 
cancer therapy is also an underexplored area, and 
recently, significant advancements have been made in 
utilizing copper oxide nanoparticles (CuONPs) for 
gene delivery applications [134]. Looking at a study 
that confirmed the stability of conjugated copper 
oxide nanoparticles (CuONPs) with folate, there was 
significant cytotoxicity observed against 
MDA-MB-231 breast adenocarcinoma cells by 
induced apoptosis and reactive oxygen species. The 

nanoparticles were synthesized using Staphylococcus 
aureus extracts [135]. 

There are studies where copper nanoparticles 
were characterized for anti-microbial activity [136] 
and were tested against seven strains of microbes, 
with the right sized nanoparticles, and fast synthesis 
[137]. In a recent study, CuONPs were biologically 
synthesized using leaf extract from Melia azedarach, 
followed by functionalization with chitosan and 
polyethylene glycol [134]. The CuONPs were then 
conjugated with folate as a targeting ligand to 
enhance their specificity for cancer cells [134]. In vitro 
studies assessing cytotoxicity showed that the 
CuONPs maintained cell viability greater than 70% 
across various cell lines, including human embryonic 
kidney (HEK293), breast adenocarcinoma (MCF-7), 
and cervical cancer (HeLa) cells [134].  

Another study explored the phytochemical- 
assisted synthesis of copper nanoparticles (CuNPs) 
using the stem extract of Hippophae rhamnoides, a 
plant indigenous to the Himalayas and known for its 
rich phytochemical profile [138]. Further investigation 
into the CuNPs’ anticancer potential was conducted 
on HeLa cell lines [138]. Results from the MTT assay 
indicated a dose-dependent cytotoxic effect with an 
IC50 value of 48 µg/mL, underscoring a strong 
inhibitory impact on cancer cells [138].  

 

 
Figure 3. Thematic illustration of how green synthesized nanoparticles are formed [117]. 
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Figure 4. Different types of green synthesized nanoparticles, with their biological extract origin and metal ions showed. 

 

Zinc nanoparticles 

Cytotoxicity assays conducted on HT-29 colon 
cancer cells revealed that ZnO(Zinc Oxide) 
nanoparticles synthesized with Artocarpus hirsutus 
seed extract exhibited potent dose-dependent 
cytotoxic effects [139]. The nanoparticles triggered 
reactive oxygen species generation, leading to 
oxidative stress that damaged cellular structures and 
pathways critical for cell survival [139]. This oxidative 
environment contributed to the downregulation of the 
anti-apoptotic Bcl-2 gene, promoting apoptosis in 
cancer cells [139]. Additionally, the study highlighted 
morphological changes associated with apoptotic cell 
death, supporting the mechanism of action [139]. The 
study by Mongy et. al investigated the biogenic 
synthesis of zinc oxide nanoparticles (ZnO NPs) using 
Rhus coriaria fruit extracts, demonstrating their 
eco-friendly production and potent anti-cancer effects 
on breast cancer cells, MCF-7 and MDA-MB-231 [140]. 
Mechanistic studies indicated that ZnO NPs induce 
apoptosis in MDA-MB-231 cells, as evidenced by 
significant nuclear fragmentation, increased apoptotic 
populations, and S-phase arrest [140]. Additionally, 
the ZnO NPs significantly hindered the 
colony-forming ability of MDA-MB-231 cells and their 

wound healing capabilities, indicating promising 
anti-migratory properties [140]. Zinc nanoparticles 
also exhibit anti-microbial activity, causing bacterial 
cell death as soon as they interact, and the process has 
been experimentally known to be the simplest, in 
comparision with other nanoparticles [141].  

Magnesium nanoparticles 

Magnesium oxide nanoparticles (MgO NPs) are 
garnering increasing attention compared to other 
metal oxide nanoparticles due to their unique 
properties and diverse applications [142]. Their 
enhanced stability-to-weight ratio, lightweight nature, 
and recyclability make them particularly appealing 
for various fields, especially in biological applications 
[142]. MgO NPs are nontoxic and hygroscopic, which 
further contributes to their utility in bio-medical 
contexts [142]. In a study, the synthesis of magnesium 
oxide nanoparticles utilizing the bark extract of Abrus 
precatorius demonstrated high efficacy of treatment 
with MgO NPs inducing both apoptosis and necrosis 
in a concentration-dependent manner [143]. 
Cytotoxicity investigations revealed the cytotoxic 
effects of MgO NPs were time- and dose-dependent 
[143]. Notably, the MgO NPs induced reactive oxygen 
species formation, leading to DNA damage and 
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subsequent apoptosis in the A375 cell line [143]. 
Magnesium nanoparticles have additional 
anti-microbial activitiy against food-borne pathogens 
[144].  

Other metallic nanoparticles 

In recent years, spinel ferrite nanoparticles have 
garnered significant attention for their promising 
applications in biomedicine, particularly in cancer 
treatment through plasmonic photothermal therapy 
[145]. This innovative approach utilizes nanoparticles 
that exhibit strong absorption in the infrared region, 
enabling localized heating upon laser irradiation 
[145]. Among various spinel ferrite nanoparticles, 
cobalt ferrite (CoFe₂O₄) and zinc ferrite (ZnFe₂O₄) 
have emerged as notable candidates due to their 
unique magnetic and thermal properties [145]. The 
efficacy of these biosynthesized nanoparticles was 
evaluated against MCF-7 breast cancer cells in 
conjunction with laser radiation; revealing a 
significant reduction in cancer cell viability, with 
CoFe₂O₄ nanoparticles exhibiting greater 
photothermal efficacy compared to ZnFe₂O₄ [145]. 
Both nanoparticles showed acceptable 
biocompatibility with normal cells, emphasizing their 
potential for safe biological applications [145]. The 
cytotoxicity mechanism is primarily attributed to the 
generation of reactive oxygen species, inducing 
oxidative stress and disrupting cellular functions, 
while ZnFe₂O₄ nanoparticles demonstrated enhanced 
efficacy in inducing cell death, likely due to zinc’s role 
in cellular metabolism and tumor suppression 
pathways [145]. Another promising anti-cancer study 
investigated the synthesis of cerium oxide 
nanoparticles (CeO2 NPs) utilizing pistachio Vera 
Pericarp essential oil as a coating, focusing on human 
prostate (LNCap) and breast cancer (MCF7) cell lines 
[146]. The biological assays demonstrated that CeO2 
NPs exhibited significant cytotoxic effects on LNCap 
and MCF7 cells, with a marked decrease in cell 
viability observed when used in conjunction with 
zoledronic acid [146]. These nanoparticles affected cell 
proliferation, apoptosis, and migration by regulating 
the expression of apoptosis-related genes BCL-2 and 
BAX, as evidenced by real-time PCR analysis [146]. 
Specifically, treatment with CeO2 NPs resulted in a 
reduction of BCL-2 expression and an increase in BAX 
expression, thereby promoting apoptosis [146]. The 
results indicate that CeO2 NPs, especially when 
combined with ZA, could be effective therapeutic 
agents for treating prostate and breast cancers [146]. 
The anticancer properties of selenium nanoparticles 
were evaluated using human breast cancer MCF-7 cell 
lines [147]. At a concentration of 500 mg/mL, SeNPs 
significantly reduced cell viability, lowering it to 

61.2 ± 2.2% after 24 hours of exposure [147]. This 
indicated a substantial cytotoxic effect on cancer cells, 
suggesting that SeNPs could potentially inhibit cancer 
cell proliferation [147]. The results highlight the 
potential of SeNPs as a promising agent for cancer 
treatment, especially for breast cancer, where targeted 
nanoparticle therapies are of growing interest [147]. 
Researchers synthesized pure and Cobalt-doped 
Nickel Oxide nanoparticles (1%,3%, and 5% 
Co-NiO-NP) using Salvadora persica plant extract 
[148]. Physicochemical analyses confirmed uniformly 
spherical nanoparticles at nanoscale. Cytotoxicity 
tests on MCF-7(breast cancer) and HUVEC (human 
endothelial) cell lines showed that Co-doped NiO-NP 
had greater inhibitory effects than pure NiO-NP, with 
cytotoxicity increasing with cobalt content [148]. 
These findings support the potential of Co-doped NiO 
nanoparticles for biological applications, particularly 
in cancer treatment [148]. A study that examined the 
effects of Mentha spicata-loaded Fe nanoparticles on 
LS174t colon cancer cells revealed changes in the 
expression of pro-apoptotic BAX and anti-apoptotic 
Bcl2, suggesting a pro-apoptotic impact from the 
combination of Mentha spicata and Fe nanoparticles 
[149]. The synthesized nanoparticles demonstrated 
note-worthy interactions with LS174t cells, showing 
not only significant cytotoxicity but also alterations in 
the apoptotic pathway, as indicated by the 
modulation of BAX and Bcl2 expression [149]. This 
pro-apoptotic activity, particularly pronounced in the 
Mentha spicata-loaded Fe nanoparticles, suggests 
their potential role in enhancing the effectiveness of 
existing cancer therapies, especially when combined 
with radiotherapy [149].  

Limitations of Green nanoparticles 
There is no doubt in establishing the fact that 

green nanoparticles are sustainable, efficient and have 
additional properties (Table 1), however, there are 
certain limitations [150]. There are risks of off-target 
toxicity as nanoparticles tend to translocate across 
different barriers with ease [150]. The extent of 
biochemical reactions caused by the nanoparticles 
within the human body still needs complete 
comprehension [150]. Unregulated translocations can 
result in harmful effects such as oxidative stress, 
cytotoxicity and genotoxicity [150]. Moreover, 
sourcing of raw material is sometimes challenging in 
green synthesis as some natural sources tend to be 
endemic to particular regions [116]. Long reaction 
time and consequential energy consumption is also a 
matter of concern when it comes to the synthesis 
process [116]. Variable outcomes in terms of particle 
size, quality and effectiveness are potential issues that 
can happen during the synthesis process [116]. Since 
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green synthesis can depend on a lot of factors such as 
pH, temperature and bio-chemical conditions, 
aggregation is a possibility that can hinder drug 
efficiency [151]. Proper stabilization and guidance 
system for green nanoparticles within the body can 
make a lot of difference in cancer theranostics. 

Recent research heralding protein-green 
nanoparticle nanosystem specific for 
cancer theranostics 

Latest approach involves the use of nanogels 
made of β-Lactoglobulin to be used as cargo carriers 
for metal nanoparticles [152,153]. Compared to the 
pristine nanoparticles, the absorption rate is higher 
when the metal nanoparticles are conjugated with the 
nano-gel, expanding the utility of the nanoparticles. 
Moreover, protein based nanogels can help with 
easier cell penetration and can be eviscerated by 
phagocytosis [152,154]. Silver nanoparticles 
synthesized from clitoria ternatea plant extract 
combined with sodium alginate and gelatin polymer 
blends has shown apoptotic activity in lung cancer 
cell line [155]. Gold nanoparticles derived from Cassia 
fistula had antimicrobial and anticancer activity 
against E. coli DH5-Alpha and skin melanoma cell 
line, while maintaining good stability conjugated with 
Human serum albumin [156]. Tricholoma crassum 
derived gold nanoparticles with natural protein 
coating that show anti-microbial activity against 
multiple microbes, while selectively binding to 
sarcoma cells to induce apoptotic activity [157]. The 
area of protein-green nanoparticle nanosystems is still 
an area that needs more exploration, particularly 
conducting in vivo studies and further clinical studies. 
This biological based method is generally simple and 
reduces the amount of chemicals used for synthesis. 
The protein component acts as a stabilizing and 
reducing agent for the metal nanoparticles, with a 
focus on targeted drug delivery [158]. Additionally, 
there is a positive effect of proteins on the synergistic 
nanoparticle in maintaining the colloidal stability of 
the nanoparticle [159]. The protein’s corona often has 
additive properties such as accumulation, 

degradation, inflammation, cellular uptake and 
clearance, which makes the nano system compatible 
with complex organism systems like that of human 
[159]. Nanoparticle specific processes such as glass 
transition, crystallization, gelation and flocculation 
which can be influenced by the protein involved [159]. 
This overall can control the biological reactivity of the 
nano system, making it safer and sustainable [159]. 
Design principles state that the nano systems can be 
used in diagnostics through fluorescence imaging, 
colorimetric assay, photothermal and localized 
surface plasmon resonance [160]. They could also 
cause cell cycle arrest, apoptosis, and cause the 
tumour to be treated [161] (Figure 5). One of the 
recent papers talk about green synthesized zinc 
nanoflowers from Heliotropium indicum extract, coated 
with albumin being used to induce oxidative stress in 
melanoma cells [162]. Multifunctionality is possible 
due to material synergy, the principle behind effective 
stimuli response for the hybrid nanosystems [163]. In 
vivo research faces limitations such as large-scale 
manufacturing, and in vitro studies help in detailed 
testing in controlled settings [164]. Reproducibility is 
another challenge due to the involvement of organic 
compounds [164]. As most of them are usually one 
pot approaches, they do not create toxic byproducts 
[165]. However, there are chances of minimal toxicity 
due to incorrect concentrations, excess metal ions, 
excess phenols or salts [165]. Nevertheless, the green 
synthesis methods have an environmental advantage 
over the conventionally synthesis methods, which is 
in line with the United Nations’s SDGs (Sustainable 
Development goals) for 2030 [166,167,168] (Figure 6). 
The United Nations had envisioned 17 goals and 169 
targets as part of a blueprint to develop sustainable 
practices for living [167]. Biosynthesized nano 
systems are the need of the hour as they sustain major 
SDG targets such as Good health and well-being (SDG 
3), Clean water and sanitation (SDG 6), Industry, 
Innovation and Infrastructure (SDG 9) and 
Responsible consumption and production (SDG 12) 
[167]. 

 

Table 1. Multifunctionality of green nanoparticles derived using green synthesis 

Element Bioextract origin Anti-microbial Anti-oxidant Anti-proliferative Anti-inflammatory Source 
Gold Coleus scutellarioides - + - - Al-Mafarjy et al., 2024 
Gold Moringa oleifera + + + - Bouttier-Figueroa et al., 2024 
Silver Andrographis macrobotrys Nees + + - + Sivakumar et al., 2023 
Silver Melissa officinalis - + + - Motafeghi et al., 2023 
Silver Moringa peregrina - + - - Al Baloushi et al., 2024 
Silver Champia parvula + + - - Viswanathan et al., 2024 
Zinc Artocarpus hirsutus + - - - Sampath et al., 2023 
Magnesium Abrus precatorius + + - - Ali et al., 2023 
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Figure 5. The overall mechanism of diagnostic and therapeutic nano systems made of protein and metal nanoparticle. 

 
Figure 6. Advantages and disadvantages of green synthesis methods over conventional methods, in line with UN’s sustainability goals for 2030. The sustainable development 
goals that are mentioned in this context include SDG 3: Good health and well-being, SDG 6: Clean water and sanitation, SDG 9: Industry, Innovation and Infrastructure and SDG 
12: Responsible consumption and production, all of which support the need of designing biosynthesized nano systems from protein and green synthesis origins [167]. 
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Figure 7. Example of core shell and hollow shell nanogels being synthesized [179]. 

 
 

Future prospects of cancer theranostics: 
safe and efficient protein-green 
nanoparticle nanosystems 

Nanoparticles derived from green synthesis is an 
eco-friendly, cost-effective method and utilizes 
microbes and plants, leveraging their ability to absorb 
and transform inorganic metal ions [169]. Compared 
to traditional synthesis methods, green synthesis is 
more sustainable and biologically safe [169]. A lot of 
invitro studies are present that strongly establish the 
anti-microbial and anti-cancer activity of the green 
synthesized nanoparticles. However, their full 
potential could be realized through more in vivo 
studies, especially with their conjugation with protein 
nanostructures. There are many studies that have 
proved the anti-cancer and anti-bacterial activities of 
protein-green nanoparticle nanosystems, where the 
nanoparticles probably were not green synthesized. 
These nanosystems come under the class of hybrid 
nanostructures, which combines different nano 
materials, enhancing their functionality through 
unique synergistic properties [170]. They could be 
core-brush nanoparticles, hybrid nanogels or 
core-shell nanoparticles, based on the configuration of 
the nanomaterial produced (Figure 7) [171]. The 
future research can focus on fine tuning the properties 

of the nanosystems [172], improve multi-functionality 
[22], and enhance their native properties [22]. The 
nanosystems can be designed through sol-gel, 
solution-phase or through ligand exchange [170]. To 
make the process easier, artificial intelligence can be 
used during the research and development process 
for prediction, modelling, material discovery and 
design [173]. Using Nano-Quantitative 
structure-activity relationship (NQSAR) principles, 
Artificial intelligence and nanotechnology can be 
brought together for structural characterization as 
well as toxicity prediction [174]. Artificial neural 
networks can be used for QSAR, while CORAL can be 
used for cell viability tests and toxicity prediction 
[174-177]. Support vector machines can be used for 
target specification while Logistic linear regression 
can be used for Adverse outcome pathways 
[174,177,178]. Nanoinformatics could be leveraged to 
reduce the time spent in research and development, 
generating strong candidates for in vivo and 
pre-clinical studies. The future should focus on 
establishing a comprehensive pipeline for entirely 
naturally synthesized nanosystems, minimizing 
reliance on artificial nanomaterials. This approach 
would help protect the environment while offering a 
safer, side-effect-free strategy to alleviate the burden 
of cancer on humans.  
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Conclusion 
In this review, different types of protein-based 

nanomaterials and green synthesized nanoparticles 
are discussed along with their potential in cancer 
theranostics. The review highlights the promising 
applications of protein-based nanostructures and 
green nano-particles in cancer therapy, focusing on 
their multi-capabilities against cancer and bacterial 
infections while emphasizing the need for further 
research to optimize their therapeutic effectiveness. 
More in vivo studies need to be done as part of future 
research to create a class of hybrid and efficient 
nanosystem that is sustainable and safe for humans. 
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