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Abstract 

Articular cartilage has a low self-repair capacity due to the lack of vessels and nerves. In recent times, 
nanofiber scaffolds have been widely used for this purpose. The optimum nanofiber scaffold should 
stimulate new tissue's growth and mimic the articular cartilage nature. Furthermore, the characteristics 
of the scaffold should match those of the cellular matrix components of the native tissue to best merge 
with the target tissue. Therefore, selective modification of prefabricated scaffolds based on the structure 
of the repaired tissues is commonly conducted to promote restoring the tissue. A thorough analysis is 
required to find out the architectural features of scaffolds that are essential to make the treatment 
successful. The current review aims to target this challenge. The article highlights different optimization 
approaches of nanofibrous scaffolds for improved cartilage tissue engineering. In this context, the 
influence of the architecture of nanoscaffolds on performance is discussed in detail. Finally, based on the 
gathered information, a future outlook is provided to catalyze development in this promising field. 
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Introduction 
There are three forms of cartilage in the body; 

hyaline or articular cartilage, fibroelastic cartilage 
(meniscus), and elastic cartilage [1]. Articular cartilage 
(AC) covers the end of the long bones at the joint 
place. The main function of AC is to create 
friction-free movement, reduce load, increase traction, 
and resist pressure distribution at the joint surface [2]. 
At the same time, it must have high tensile strength, 
resist lateral tension, and ensure tissue integrity. Also 
known as hyaline cartilage, it is a unique and durable 
connective tissue that provides nearly frictionless 
articulation for mechanical load transmission between 
joints. Thus, it plays a crucial role in the physiological 
mobility of joints [3,4].  

Cartilage architecture predominantly comprises 
collagen type II, VI, IX, X, chondrocytes, and 
glycosaminoglycans. Collagen type II mainly forms 
90–95% of the fiber network of the extracellular matrix 

of cartilage and provides its cartilaginous framework 
and tensile strength [5–8]. It exhibits the stress- 
shielding of the solid matrix components due to its 
high water content, incompressible under these 
conditions, and the structural organization of the 
proteoglycan and collagen molecules [9,10]. Further-
more, carbohydrate groups in collagen type II allow 
more interaction with water than other collagens. This 
sort of collagen, together with classes IX and XI, forms 
a fibrous network that leads to the elastic strength of 
the cartilage [11]. Besides these materials, proteo-
glycans, hyaluronic acid, and heparan sulfate are 
some of the glycosaminoglycans found in the AC [12]. 
The most prominent proteoglycan is aggrecan, which 
generates tensile strength, porosity, permeability, and 
reinforcement together with collagen fibrils in AC 
(Figure 1) [13].  
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Figure 1. Extracellular matrix of articular cartilage. Two major load-bearing macromolecules are present in articular cartilage: Collagens (mainly type II) and proteoglycans 
(notably, aggrecan). Smaller classes of molecules, such as non-collagenous proteins and smaller proteoglycans, are present in lower amounts. The interaction between the highly 
negatively charged cartilage proteoglycans and type II collagen provides the compressive and tensile strength of the tissue. Reproduced with permission [13]. Copyrighted by the 
Authors (2019). 

 
AC is divided into three areas: superficial, 

middle, and deep, each of which has its distinct 
properties; the number of cells, shape, size, and 
direction of collagen fibers and proteoglycans (Figure 
2) [14–16]. The superficial layer of AC is the thinnest, 
and the elastic properties of cartilage belong to this 
layer. Chondrocytes and collagen fibers (mainly type 
II and type IX collagen fibers with an ultra-small 
diameter (20 nm)) in this layer are aligned parallel to 
the surface to protect the deeper layers against tensile, 
compressive, and shear forces [17–19]. Given the 
hierarchical nature of the AC, its repair is non-trivial. 
This perspective article aims to summarize recent 
progress in solving this issue using nanoscaffolds and 
provides directions how to facilitate further 
development in this field.  

Articular Cartilage damages 
AC has a low post-traumatic injury or wear 

self-repair capacity due to a lack of vessels and nerves. 
Furthermore, its cell proliferation capacity is not 
satisfactory [21]. Therefore, AC-related defects are 
especially problematic. In general, people with joint 
injuries and meniscal or ligament tears are prone to 
cartilage joint damage [22,23]. Consequently, 
damaged cartilage can lead to arthritis in the joint. 
Also, AC can be damaged by injury or physiological 

wear and tear during aging. Initially, in osteoarthritis, 
chondrocytes release many anabolic factors to repair 
the lesions. However, the factors alter the phenotype 
of chondrocytes by forming non-functional cartilage 
(fibrocartilage), which is thinner than regular AC and 
degenerates under mechanical pressure [24]. 

Treatment procedures for articular 
cartilage defects 

Treatment of AC injuries is one of the most 
challenging issues of musculoskeletal medicine due to 
the poor intrinsic ability of this tissue to repair itself. 
Nevertheless, restoring AC is essential as it can relieve 
pain and improve function. Most importantly, it can 
delay or prevent the onset of arthritis. The most 
common procedures for cartilage restoration are as 
follows. 

Microfracture 
Microfracture is commonly used for cartilage 

restoration by marrow stimulation. This method 
increases the migration of mesenchymal stem cells 
(MSCs), the influx of growth factors, and platelets 
from bone marrow to the defect site. However, this 
method results in the formation of fibrocartilage 
rather than normal hyaline AC [25], which is 
unwanted. 
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Figure 2. Structure of the articular cartilage layer. Reproduced with permission [20]. Copyrighted by the Authors (2021). 

 

Drilling 
This therapeutic approach creates holes in the 

subchondral bone and supplies blood flow into 
defects to induce the repair of cartilage. The holes are 
made with a surgical drill or wire. Although the 
method is similar to microfracture, in this technique, 
the heat of the drill damages the AC tissues. It again 
results in the formation of fibrocartilage [26,27], so it is 
also not recommended.  

Abrasion Arthroplasty 
Abrasion Arthroplasty removes some areas of 

the AC to create new capacities for joint surfaces. 
Hence, it can eliminate the injured cartilage tissue 
[28]. But unfortunately, this is only a palliative 
approach as it does not promote AC regeneration. 
Consequently, it is employed as a last resort 
treatment. 

Autologous chondrocyte implantation (ACI) 
Autologous Chondrocyte Implantation (ACI) is 

used to repair AC defects in a surgical approach. ACI 
is divided into a two-step procedure. In the first 
surgical procedure, healthy cartilage tissue is taken 
from a non-weight-bearing area of the joint during an 
arthroscopic procedure. The cartilage tissue is then 
sent to the laboratory, and chondrocytes are isolated, 
which are subsequently cultured and proliferated. 
The second surgical procedure (arthrotomy) is an 
open procedure in which the newly grown cells are 
injected into the articular cartilage defects [29]. ACI is 
the most useful technique for treating isolated 
cartilage defects in younger patients with larger 
defects in AC who would like to return to activities of 
daily living. Unfortunately, despite its merits, this 
approach does not restore the possibility of competing 
in high-level sports [30–32]. 

Osteochondral Autograft Transplantation 
(OCA) 

OCA has demonstrated consistent clinical results 
and can be used to treat a variety of articular defects 
of the knee using size-matched cadaveric donor plugs 
that permit immediate structural restoration of the 
joint articular surface [33,34] (Figure 3). 

All described treatment strategies have been 
applied to regenerate cartilage lesions to restitute 
articular function and relieve the associated pain. 
Although they decrease patient discomfort and 
enhance joint mobility, the repaired tissue is often 
fibrocartilage with less clinical action [36]. 

Engineering articular cartilage tissue 
Tissue engineering is used to reconstruct and 

regenerate damaged tissues. It is a medical technology 
that has attracted considerable attention in recent 
times. The main purpose of this approach is not only 
to repair tissue but primarily to improve organ 
function. Tissue engineering also has diagnostic 
applications made in vitro and is used to test the 
biocompatibility of the materials [37]. Three 
components are required to achieve an ideal tissue 
engineering procedure: appropriate scaffold, cell, and 
induction factors. In recent decades, success in tissue 
engineering has mainly influenced the therapy of 
defects and tissue regeneration. A stable increase in 
life expectancy and a related improvement in life 
quality are linked with this development, including 
the understandable request of the population to 
accept no damage in increasing age during the whole 
life. It is evident that modern medicine seeks solutions 
to avoid the loss of cell or tissue functions [3,38], 
which is more beneficial than treating advanced state 
diseases. 
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Figure 3. Schematic representation of osteochondral autograft transplantation. Reproduced with permission [35]. Copyrighted by the Authors (2021). 

 

Nanofiber scaffolds 
Since the current surgical procedures for 

regenerating a cartilage defect have considerable 
drawbacks, 3D scaffolds might offer promising results 
to facilitate the restoration of target tissues [39]. Also, 
the advances in nanotechnology have offered 
groundbreaking progress in the field of tissue 
engineering by providing a microenvironment for the 
induction of cell expansion and differentiation into 
the desired lineage [40]. The development in this area 
is particularly dynamic as nanomaterials exhibit good 
physicochemical and biomimetic properties that can 
stimulate the growth of chondrocytes and the 
regeneration of AC [41]. Nanofibers have been 
considered one of the most extensively studied 
nanomaterials for cartilage regeneration and are 
constructed via different techniques, including 
electrospinning, self-assembly, phase separation, and 
drawing [42–44]. The polymer nanofibers used for the 
regeneration of AC are both synthetic and natural 
scaffolds. Natural nanofiber scaffolds include alginate 
[45], gelatin [46], agarose [47], hyaluronic acid [48], 
fibrin, and collagen [49]. Synthetic scaffolds are very 
diverse and mostly contain polycaprolactone [50], 
polyethylene glycol, polyurethane [51], poly(p- 
dioxanone) [52], poly(lactic acid) [53]. It is of utmost 
importance to ensure that the selected scaffold 
exhibits tissue compatibility and biodegradability.  

On the one hand, synthetic polymers are 
reproducible, and their properties can be easily 
controlled [54]. Many polymer nanofibers well 
maintain cartilage stem cell differentiation and proli-
feration in vitro [55,56]. Nevertheless, Earth-abundant 
natural polymers have more applications in clinical 
studies, and collagen is the most prevalently used 
type [48]. Collagen polymers provide an essential 
network [57] for cartilage formation, both with and 
without cells [58]. In general, natural scaffolds are 
used as gels in which the polymer network retains a 
large amount of water. This environment supports the 
proliferation, differentiation, and adhesion of cells. 

However, unfortunately, these polymers have poor 
mechanical properties and weak resistance to 
pressure and tension [59]. 

Regardless of the origin, the nanofiber scaffolds 
should stimulate the growth of new tissue in all 
aspects and mimic the characteristics of AC and the 
area below the articular cartilage. In addition, the 
scaffold should exhibit the potential to merge with the 
target and withstand physical activity tissue [60]. 

The effect of architectural features of 
scaffolds on cartilage repair 
 

Scaffolds have been applied to improve tissue 
regeneration by recapitulating a difference in the 
physical structure of the tissue. Different strategies 
have been used, including fibrous self-synthesis, 
phase segregation, and electrospinning of nanofibers 
to produce the fibrous collagen network of the 
extracellular matrix via the aid of nanotechnology. 
Today, in reconstructive medicine, electrospinning 
scaffolds are used to repair and regenerate the tissues, 
such as heart muscle, cartilage, bone, nerve, and 
others. Interestingly, optimization of the nanoscaffold 
synthesis conditions may even lead to fiber alignment 
to obtain anisotropic materials for cell growth (Figure 
4) [61].  

Some research has shown the potential of 
electrospinning of fiber scaffolds for cartilage tissue 
restoration [62]. Different 2D electrospun nanofibrous 
matrices containing a single polymer have been 
implemented in the chondrogenic differentiation of 
BM-derived SCs [63]. It has been shown that soluble 
factors minimally affect a cellular orientation, and 
mainly physical cues are connected with this issue. 
However, chondrogenic factors influence cell shape, 
which should be taken into account [64]. The 
expression of collagen type II and S GAG content has 
shown a substantial increment in cells cultured on the 
nanofibrous scaffold in the presence of chondrogenic 
media.  
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Figure 4. Electrospinning of fibrous (A) isotropic and (B) anisotropic nanoscaffolds. 
Reproduced with permission from [61]. Copyrighted by Wiley (2012). 

 
In another study, the culture of MSCs on electro-

spun PCL nanofiber stimulated the fibroblast-like 
morphology. In contrast, the dynamic condition led to 
a round-shaped morphology with elevated collagen 
type I, II, and sGAG [65]. Dahl et al. reported the 
effects of PLGA/PCL electrospun nanofibers on 
chondrogenic differentiation of human Umbilical 
Cord MSCs [66], resulting in high levels of 
proteoglycans and sGAG. 

Other hybrid nanofiber scaffolds have also been 
applied in this context. For instance, PLGA/collagen 
scaffolds have shown optimal chondrogenesis 
potential [52]. Li et al. have developed a PLLA/silk 
fibroin (PLLA/SF) composite that provided a suitable 
platform for the adhesion and growth of chondrocytes 
for cartilage tissue engineering purposes [67]. Aligned 
nanofibrous scaffolds have been shown to mimic the 
naturally-occurring extracellular matrix and result in 
fibrochondrogenesis [68]. Moreover, Shafiee et al. 
have shown that aligned PLLA/PCL nanofibrous 
scaffolds and compared them with randomly oriented 
scaffolds. The results showed that aligned scaffolds 
led to a bipolar extension along the fiber and a 
significantly higher expression of the chondrogenesis 
markers [69].  

Although nano-sized structures simulate well 
the ECM components, they can also promote cell 
spreading and restrict infiltration [70,71]. Thus, the 
construction of micro-nanofibers can overcome these 
limitations and assist in yielding larger pore sizes, 
improved cellular differentiation, and formation of 
ECM [72]. Leverson et al. have fabricated electrospun 
PCL microfibers (Pμ), PCL microfibers with PCL 
nanofibers (PμPn), and PCL microfibers and fibrin 
nanofibers (PμFn) scaffolds. Accordingly, similar 

porosity was observed in both PμFn and PμPn 
scaffolds. However, larger pore sizes were obtained in 
Pμ scaffolds. Also, higher density was observed in 
PμPn scaffolds. More elongated spindle-like cells of 
human umbilical MSCs appeared on Pμ and PμFn 
scaffolds, whereas flattened, broad polygonal 
morphology was observed for PμPn scaffolds [73].  

The synthesis of 3D nanofibrous scaffolds has 
also highly enhanced the chondrogenesis of different 
SCs [74]. Li et al. have shown that a 3D nanofibrous 
scaffold produced a higher level of cartilaginous ECM 
from chondrocyte-like cells [75]. Moreover, it has been 
revealed that biomolecules influence the chondro-
genic differentiation of SCs seeded on nanofibrous 
structures. Schagemann et al. have reported that 
augmentation of the nanofibrous scaffold with or 
without TGF-β1 and/or hyaluronan could positively 
affect the chondrogenic differentiation of MSCs. Also, 
they showed that microfibrous scaffolds release 
higher amounts of TGF-β1. However, these scaffolds 
show a lower level of chondrogenic markers 
compared to nanofibrous scaffolds [76].  

Research has also shown that scaffolds with 
parallel fibers and random Poly(l-lactide) (PLLA)/ 
Polycaprolactone (PCL) [69] and Polycaprolactone 
(PCL)/Poly(lactic-co-glycolic acid) (PLGA) can 
support progenitor cells and human bone marrow- 
derived stem cells, adhesion, proliferation, and 
regeneration of cartilage [77]. However, the 
proliferation of stem cells was higher on the random 
scaffolds than on the aligned scaffolds. In contrast, the 
differentiation of stem cells was higher on the 
scaffolds with parallel fibers. Thus, such a scaffold 
with paralleled fibers structure is suitable for the 
superficial area of AC wherein its fibers are arranged 
parallel to the surface.  

Although nano- and microfibers electrospun 
scaffolds maintain and support the growth and 
proliferation of bone marrow-derived stem cells, 
nano-fibrous PCL scaffolds play a greater cartila-
ginous activity. That was shown by produced sGAG 
and collagen type II expression, and this scaffold may 
be suitable for the repair of the superficial area of the 
scaffold. Other studies have reported similar results 
with nanofiber scaffolds, as opposed to microfiber 
scaffolds or smooth (film) Poly(L-lactide) (PLLA) [78] 
or poly (L-co-D,L-lactide) (PLDLA) [79] scaffolds. The 
nano-fibrous structures preserve the morphology of 
chondrocytes and increase the expression of cartilage 
markers and the formation of the extracellular matrix. 
Nevertheless, it should be noted that not only the fiber 
size and porosity but also the pore size acts as a 
significant factor in carcinogenesis [80]. Electrospun 
nanofiber scaffolds with low porosity/high density 
often cause negligible cell permeability and limit 
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nutrient infiltration to the deep zone of the cartilage 
tissue [81]. Thus, various modifications in the fiber 
size and density have been applied to strengthen and 
increase the permeability and transport potential of 
biomaterials through scaffold fibers [82,83]. Paralleled 
PCL strands combined with synovial-derived stem 
cells have shown a significant repair of meniscal hoop 
structure injuries in rabbits [84] (Figure 5).  

In swine, as a large animal, the implantation of 
PCL/BMSCs in full-thickness cartilage defect of AC 
led to a complete repair and formation of hyaline 
cartilage-like tissue 6 months after seeding [85]. 
Seeding collagen/PLCL scaffolds with chondrocytes 
in layer-by-layer sandwich constructs of collagen/ 
PLCL in mice harvested 83% of native cartilage after 
12 weeks of transplantation [86]. PVA/chondroitin 
sulfate electrospun fibers seeded in a rat articular 
cartilage defect showed increased chondrogenesis 
compared to the control group of the empty defect 
[87]. Resveratrol-PLA-gelatin scaffolds, compared 
with PLA-gelatin scaffolds, were found to treat faster 
the rat articular cartilage defect 12 weeks post- 
transplantation [88]. Repairing the cartilage defects in 
the rabbit model by aligned PLLA-polydopamine 
chondroitin sulfate fibers was facilitated, and cartilage 
defects were regenerated by hyaline cartilage-like 
tissue [89]. In light of the foregoing, the application of 
nanoscaffolds for cartilage restoration is an auspicious 
approach with a high application potential, which can 
gain from recent breakthroughs in biomedical 
engineering [90–93]. 

Conclusion and Future Outlooks 
This review discussed the application of 

nanofiber scaffolds that can result in the complete 
synthesis of native hyaline cartilage tissue in optimum 
situations. Tissue replacement through non-biological 
and regenerative systems in vivo and the formation 
and design of nanofiber scaffolds are currently hot 
topics in the tissue engineering field because of its 
merits. Still, the examined literature reveals increasing 
demand for qualified tissue regeneration strategies to 
increase the number of successful transplantations. 
Thus, it is vital to develop strategies for creating cells, 
tissues, and organs with good compatibility to reduce 
the future rejection rate of clinical programs [94]. In 
light of the presented research, tissue engineering 
appears to be a promising approach to reach these 
goals. Furthermore, judging by the maturity of the 
results, the production of appropriate scaffolds for 
tissue engineering may soon materialize at a 
sufficiently large scale [95]. Nevertheless, the 
multidisciplinary nature of this challenge hampers 
progress. Thus, it is necessary to promote interactions 
between engineers and physicians to provide 
possibilities for their collaboration for the sake of 
tissue engineering. 

Importantly, there is much room to optimize the 
performance of nanoscaffolds. For instance, future 
scaffold constructs will only be successful if improved 
compatibility regarding the ECM is realized [96]. In 
addition, a broader spectrum of nanofibers, stem cell 
sources, and differentiation-inducing growth factors 
should be evaluated to reach the most suitable 
combination of materials for cartilage repair (Figure 
6).  

 

 
Figure 5. Schematic illustration of a mixed material of a nanofiber scaffold along with scaffold-free tissue-engineered construct (TEC) consisting of cells and extracellular matrix 
(ECM). A: The parallel structure of the scaffold. B: TEC structure. C: H&E staining of the combined material consisting of an electrospun nanofibrous scaffold (A) and a TEC (B). 
D: Schematic depiction of combined material comprising an electrospun nanofibrous scaffold (A) and a TEC (B). Reproduced with permission [84]. Copyrighted by the Authors. 
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Figure 6. Most important factors, which should be the matter of further research to increase the technology readiness level of nanofiber-bases scaffolds for cartilage engineering. 

 
In this context, the fabrication and implantation 

of appropriate bioreactors that eventually aid in more 
ECM formation and the achievement of artificial 
constructs mimicking native cartilage tissues should 
be considered. Finally, although several investigations 
produced promising results regarding the efficacy of 
nanofibers for repairing cartilage defects in vivo, more 
effort is still necessary for shifting the information 
from in vitro to in vivo phase. Only then this promising 
concept will serve society and improve the quality of 
our life.  
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